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Abstract
We have developed Ceph, a distributed file system that
provides excellent performance, reliability, and scala-
bility. Ceph maximizes the separation between data
and metadata management by replacing allocation ta-
bles with a pseudo-random data distribution function
(CRUSH) designed for heterogeneous and dynamic clus-
ters of unreliable object storage devices (OSDs). We
leverage device intelligence by distributing data replica-
tion, failure detection and recovery to semi-autonomous
OSDs running a specialized local object file system. A
dynamic distributed metadata cluster provides extremely
efficient metadata management and seamlessly adapts to
a wide range of general purpose and scientific comput-
ing file system workloads. Performance measurements
under a variety of workloads show that Ceph has ex-
cellent I/O performance and scalable metadata manage-
ment, supporting more than 250,000 metadata operations
per second.

1 Introduction

System designers have long sought to improve the per-
formance of file systems, which have proved critical to
the overall performance of an exceedingly broad class of
applications. The scientific and high-performance com-
puting communities in particular have driven advances
in the performance and scalability of distributed stor-
age systems, typically predicting more general purpose
needs by a few years. Traditional solutions, exemplified
by NFS [20], provide a straightforward model in which
a server exports a file system hierarchy that clients can
map into their local name space. Although widely used,
the centralization inherent in the client/server model has
proven a significant obstacle to scalable performance.

More recent distributed file systems have adopted ar-
chitectures based on object-based storage, in which con-
ventional hard disks are replaced with intelligent object
storage devices (OSDs) which combine a CPU, network

interface, and local cache with an underlying disk or
RAID [4, 7, 8, 32, 35]. OSDs replace the traditional
block-level interface with one in which clients can read
or write byte ranges to much larger (and often variably
sized) named objects, distributing low-level block allo-
cation decisions to the devices themselves. Clients typ-
ically interact with a metadata server (MDS) to perform
metadata operations (open, rename), while communicat-
ing directly with OSDs to perform file I/O (reads and
writes), significantly improving overall scalability.

Systems adopting this model continue to suffer from
scalability limitations due to little or no distribution of
the metadata workload. Continued reliance on traditional
file system principles like allocation lists and inode ta-
bles and a reluctance to delegate intelligence to the OSDs
have further limited scalability and performance, and in-
creased the cost of reliability.

We present Ceph, a distributed file system that pro-
vides excellent performance and reliability while promis-
ing unparalleled scalability. Our architecture is based on
the assumption that systems at the petabyte scale are in-
herently dynamic: large systems are inevitably built in-
crementally, node failures are the norm rather than the
exception, and the quality and character of workloads are
constantly shifting over time.

Ceph decouples data and metadata operations by elim-
inating file allocation tables and replacing them with gen-
erating functions. This allows Ceph to leverage the in-
telligence present in OSDs to distribute the complexity
surrounding data access, update serialization, replication
and reliability, failure detection, and recovery. Ceph uti-
lizes a highly adaptive distributed metadata cluster ar-
chitecture that dramatically improves the scalability of
metadata access, and with it, the scalability of the en-
tire system. We discuss the goals and workload assump-
tions motivating our choices in the design of the architec-
ture, analyze their impact on system scalability and per-
formance, and relate our experiences in implementing a
functional system prototype.
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Figure 1: System architecture. Clients perform file I/O
by communicating directly with OSDs. Each process can
either link directly to a client instance or interact with a
mounted file system.

2 System Overview

The Ceph file system has three main components: the
client, each instance of which exposes a near-POSIX file
system interface to a host or process; a cluster of OSDs,
which collectively stores all data and metadata; and a
metadata server cluster, which manages the namespace
(file names and directories) while coordinating security,
consistency and coherence (see Figure 1). We say the
Ceph interface is near-POSIX because we find it appro-
priate to extend the interface and selectively relax con-
sistency semantics in order to better align with the needs
of applications and to improve system performance.

The primary goals of the architecture are scalability (to
hundreds of petabytes and beyond), performance, and re-
liability. Scalability is considered in a variety of dimen-
sions, including the overall storage capacity and through-
put of the system, and performance in terms of individ-
ual clients, directories, or files. Our target workload may
include such extreme cases as tens or hundreds of thou-
sands of hosts concurrently reading from or writing to
the same file or creating files in the same directory. Such
scenarios, common in scientific applications running on
supercomputing clusters, are increasingly indicative of
tomorrow’s general purpose workloads. More impor-
tantly, we recognize that distributed file system work-
loads are inherently dynamic, with significant variation
in data and metadata access as active applications and
data sets change over time. Ceph directly addresses the
issue of scalability while simultaneously achieving high
performance, reliability and availability through three
fundamental design features: decoupled data and meta-
data, dynamic distributed metadata management, and re-
liable autonomic distributed object storage.
Decoupled Data and Metadata—Ceph maximizes the
separation of file metadata management from the storage
of file data. Metadata operations (open, rename, etc.)
are collectively managed by a metadata server cluster,
while clients interact directly with OSDs to perform file
I/O (reads and writes). Object-based storage has long
promised to improve the scalability of file systems by

delegating low-level block allocation decisions to indi-
vidual devices. However, in contrast to existing object-
based file systems [4, 7, 8, 32] which replace long per-file
block lists with shorter object lists, Ceph eliminates allo-
cation lists entirely. Instead, file data is striped onto pre-
dictably named objects, while a special-purpose data dis-
tribution function called CRUSH [29] assigns objects to
storage devices. This allows any party to calculate (rather
than look up) the name and location of objects compris-
ing a file’s contents, eliminating the need to maintain and
distribute object lists, simplifying the design of the sys-
tem, and reducing the metadata cluster workload.
Dynamic Distributed Metadata Management—
Because file system metadata operations make up as
much as half of typical file system workloads [22],
effective metadata management is critical to overall
system performance. Ceph utilizes a novel metadata
cluster architecture based on Dynamic Subtree Parti-
tioning [30] that adaptively and intelligently distributes
responsibility for managing the file system directory
hierarchy among tens or even hundreds of MDSs. A
(dynamic) hierarchical partition preserves locality in
each MDS’s workload, facilitating efficient updates
and aggressive prefetching to improve performance
for common workloads. Significantly, the workload
distribution among metadata servers is based entirely
on current access patterns, allowing Ceph to effectively
utilize available MDS resources under any workload and
achieve near-linear scaling in the number of MDSs.
Reliable Autonomic Distributed Object Storage—
Large systems composed of many thousands of devices
are inherently dynamic: they are built incrementally, they
grow and contract as new storage is deployed and old de-
vices are decommissioned, device failures are frequent
and expected, and large volumes of data are created,
moved, and deleted. All of these factors require that the
distribution of data evolve to effectively utilize available
resources and maintain the desired level of data replica-
tion. Ceph delegates responsibility for data migration,
replication, failure detection, and failure recovery to the
cluster of OSDs that store the data, while at a high level,
OSDs collectively provide a single logical object store
to clients and metadata servers. This approach allows
Ceph to more effectively leverage the intelligence (CPU
and memory) present on each OSD to achieve reliable,
highly available object storage with linear scaling.

We describe the operation of the Ceph client, metadata
server cluster, and distributed object store, and how they
are affected by the critical features of our architecture.
We also describe the status of our prototype.

3 Client Operation

We introduce the overall operation of Ceph’s compo-
nents and their interaction with applications by describ-
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ing Ceph’s client operation. The Ceph client runs on
each host executing application code and exposes a file
system interface to applications. In the Ceph prototype,
the client code runs entirely in user space and can be ac-
cessed either by linking to it directly or as a mounted
file system via FUSE [25] (a user-space file system in-
terface). Each client maintains its own file data cache,
independent of the kernel page or buffer caches, making
it accessible to applications that link to the client directly.

3.1 File I/O and Capabilities
When a process opens a file, the client sends a request
to the MDS cluster. An MDS traverses the file system
hierarchy to translate the file name into the file inode,
which includes a unique inode number, the file owner,
mode, size, and other per-file metadata. If the file exists
and access is granted, the MDS returns the inode num-
ber, file size, and information about the striping strategy
used to map file data into objects. The MDS may also
issue the client a capability (if it does not already have
one) specifying which operations are permitted. Capa-
bilities currently include four bits controlling the client’s
ability to read, cache reads, write, and buffer writes. In
the future, capabilities will include security keys allow-
ing clients to prove to OSDs that they are authorized to
read or write data [13, 19] (the prototype currently trusts
all clients). Subsequent MDS involvement in file I/O is
limited to managing capabilities to preserve file consis-
tency and achieve proper semantics.

Ceph generalizes a range of striping strategies to map
file data onto a sequence of objects. To avoid any need
for file allocation metadata, object names simply com-
bine the file inode number and the stripe number. Ob-
ject replicas are then assigned to OSDs using CRUSH,
a globally known mapping function (described in Sec-
tion 5.1). For example, if one or more clients open a file
for read access, an MDS grants them the capability to
read and cache file content. Armed with the inode num-
ber, layout, and file size, the clients can name and locate
all objects containing file data and read directly from the
OSD cluster. Any objects or byte ranges that don’t ex-
ist are defined to be file “holes,” or zeros. Similarly, if a
client opens a file for writing, it is granted the capability
to write with buffering, and any data it generates at any
offset in the file is simply written to the appropriate ob-
ject on the appropriate OSD. The client relinquishes the
capability on file close and provides the MDS with the
new file size (the largest offset written), which redefines
the set of objects that (may) exist and contain file data.

3.2 Client Synchronization
POSIX semantics sensibly require that reads reflect any
data previously written, and that writes are atomic (i. e.,
the result of overlapping, concurrent writes will reflect a
particular order of occurrence). When a file is opened by

multiple clients with either multiple writers or a mix of
readers and writers, the MDS will revoke any previously
issued read caching and write buffering capabilities,
forcing client I/O for that file to be synchronous. That
is, each application read or write operation will block
until it is acknowledged by the OSD, effectively plac-
ing the burden of update serialization and synchroniza-
tion with the OSD storing each object. When writes span
object boundaries, clients acquire exclusive locks on the
affected objects (granted by their respective OSDs), and
immediately submit the write and unlock operations to
achieve the desired serialization. Object locks are simi-
larly used to mask latency for large writes by acquiring
locks and flushing data asynchronously.

Not surprisingly, synchronous I/O can be a perfor-
mance killer for applications, particularly those doing
small reads or writes, due to the latency penalty—at least
one round-trip to the OSD. Although read-write sharing
is relatively rare in general-purpose workloads [22], it is
more common in scientific computing applications [27],
where performance is often critical. For this reason, it
is often desirable to relax consistency at the expense of
strict standards conformance in situations where appli-
cations do not rely on it. Although Ceph supports such
relaxation via a global switch, and many other distributed
file systems punt on this issue [20], this is an imprecise
and unsatisfying solution: either performance suffers, or
consistency is lost system-wide.

For precisely this reason, a set of high perfor-
mance computing extensions to the POSIX I/O interface
have been proposed by the high-performance computing
(HPC) community [31], a subset of which are imple-
mented by Ceph. Most notably, these include an O LAZY
flag for open that allows applications to explicitly relax
the usual coherency requirements for a shared-write file.
Performance-conscious applications which manage their
own consistency (e. g., by writing to different parts of
the same file, a common pattern in HPC workloads [27])
are then allowed to buffer writes or cache reads when
I/O would otherwise be performed synchronously. If de-
sired, applications can then explicitly synchronize with
two additional calls: lazyio propagate will flush a given
byte range to the object store, while lazyio synchronize
will ensure that the effects of previous propagations are
reflected in any subsequent reads. The Ceph synchro-
nization model thus retains its simplicity by providing
correct read-write and shared-write semantics between
clients via synchronous I/O, and extending the applica-
tion interface to relax consistency for performance con-
scious distributed applications.

3.3 Namespace Operations
Client interaction with the file system namespace is man-
aged by the metadata server cluster. Both read operations
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(e. g., readdir, stat) and updates (e. g., unlink, chmod) are
synchronously applied by the MDS to ensure serializa-
tion, consistency, correct security, and safety. For sim-
plicity, no metadata locks or leases are issued to clients.
For HPC workloads in particular, callbacks offer mini-
mal upside at a high potential cost in complexity.

Instead, Ceph optimizes for the most common meta-
data access scenarios. A readdir followed by a stat of
each file (e. g., ls -l) is an extremely common access
pattern and notorious performance killer in large direc-
tories. A readdir in Ceph requires only a single MDS
request, which fetches the entire directory, including in-
ode contents. By default, if a readdir is immediately
followed by one or more stats, the briefly cached infor-
mation is returned; otherwise it is discarded. Although
this relaxes coherence slightly in that an intervening in-
ode modification may go unnoticed, we gladly make this
trade for vastly improved performance. This behavior
is explicitly captured by the readdirplus [31] extension,
which returns lstat results with directory entries (as some
OS-specific implementations of getdir already do).

Ceph could allow consistency to be further relaxed by
caching metadata longer, much like earlier versions of
NFS, which typically cache for 30 seconds. However,
this approach breaks coherency in a way that is often crit-
ical to applications, such as those using stat to determine
if a file has been updated—they either behave incorrectly,
or end up waiting for old cached values to time out.

We opt instead to again provide correct behavior and
extend the interface in instances where it adversely af-
fects performance. This choice is most clearly illustrated
by a stat operation on a file currently opened by multiple
clients for writing. In order to return a correct file size
and modification time, the MDS revokes any write ca-
pabilities to momentarily stop updates and collect up-to-
date size and mtime values from all writers. The highest
values are returned with the stat reply, and capabilities
are reissued to allow further progress. Although stop-
ping multiple writers may seem drastic, it is necessary to
ensure proper serializability. (For a single writer, a cor-
rect value can be retrieved from the writing client without
interrupting progress.) Applications for which coherent
behavior is unnecesssary—victims of a POSIX interface
that doesn’t align with their needs—can use statlite [31],
which takes a bit mask specifying which inode fields are
not required to be coherent.

4 Dynamically Distributed Metadata

Metadata operations often make up as much as half of file
system workloads [22] and lie in the critical path, making
the MDS cluster critical to overall performance. Meta-
data management also presents a critical scaling chal-
lenge in distributed file systems: although capacity and
aggregate I/O rates can scale almost arbitrarily with the

addition of more storage devices, metadata operations
involve a greater degree of interdependence that makes
scalable consistency and coherence management more
difficult.

File and directory metadata in Ceph is very small, con-
sisting almost entirely of directory entries (file names)
and inodes (80 bytes). Unlike conventional file systems,
no file allocation metadata is necessary—object names
are constructed using the inode number, and distributed
to OSDs using CRUSH. This simplifies the metadata
workload and allows our MDS to efficiently manage a
very large working set of files, independent of file sizes.
Our design further seeks to minimize metadata related
disk I/O through the use of a two-tiered storage strategy,
and to maximize locality and cache efficiency with Dy-
namic Subtree Partitioning [30].

4.1 Metadata Storage

Although the MDS cluster aims to satisfy most requests
from its in-memory cache, metadata updates must be
committed to disk for safety. A set of large, bounded,
lazily flushed journals allows each MDS to quickly
stream its updated metadata to the OSD cluster in an ef-
ficient and distributed manner. The per-MDS journals,
each many hundreds of megabytes, also absorb repeti-
tive metadata updates (common to most workloads) such
that when old journal entries are eventually flushed to
long-term storage, many are already rendered obsolete.
Although MDS recovery is not yet implemented by our
prototype, the journals are designed such that in the event
of an MDS failure, another node can quickly rescan the
journal to recover the critical contents of the failed node’s
in-memory cache (for quick startup) and in doing so re-
cover the file system state.

This strategy provides the best of both worlds: stream-
ing updates to disk in an efficient (sequential) fashion,
and a vastly reduced re-write workload, allowing the
long-term on-disk storage layout to be optimized for fu-
ture read access. In particular, inodes are embedded di-
rectly within directories, allowing the MDS to prefetch
entire directories with a single OSD read request and
exploit the high degree of directory locality present in
most workloads [22]. Each directory’s content is writ-
ten to the OSD cluster using the same striping and dis-
tribution strategy as metadata journals and file data. In-
ode numbers are allocated in ranges to metadata servers
and considered immutable in our prototype, although in
the future they could be trivially reclaimed on file dele-
tion. An auxiliary anchor table [28] keeps the rare inode
with multiple hard links globally addressable by inode
number—all without encumbering the overwhelmingly
common case of singly-linked files with an enormous,
sparsely populated and cumbersome inode table.
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Figure 2: Ceph dynamically maps subtrees of the direc-
tory hierarchy to metadata servers based on the current
workload. Individual directories are hashed across mul-
tiple nodes only when they become hot spots.

4.2 Dynamic Subtree Partitioning
Our primary-copy caching strategy makes a single au-
thoritative MDS responsible for managing cache coher-
ence and serializing updates for any given piece of meta-
data. While most existing distributed file systems employ
some form of static subtree-based partitioning to delegate
this authority (usually forcing an administrator to carve
the dataset into smaller static “volumes”), some recent
and experimental file systems have used hash functions
to distribute directory and file metadata [4], effectively
sacrificing locality for load distribution. Both approaches
have critical limitations: static subtree partitioning fails
to cope with dynamic workloads and data sets, while
hashing destroys metadata locality and critical opportu-
nities for efficient metadata prefetching and storage.

Ceph’s MDS cluster is based on a dynamic sub-
tree partitioning strategy [30] that adaptively distributes
cached metadata hierarchically across a set of nodes, as
illustrated in Figure 2. Each MDS measures the popu-
larity of metadata within the directory hierarchy using
counters with an exponential time decay. Any opera-
tion increments the counter on the affected inode and all
of its ancestors up to the root directory, providing each
MDS with a weighted tree describing the recent load dis-
tribution. MDS load values are periodically compared,
and appropriately-sized subtrees of the directory hierar-
chy are migrated to keep the workload evenly distributed.
The combination of shared long-term storage and care-
fully constructed namespace locks allows such migra-
tions to proceed by transferring the appropriate contents
of the in-memory cache to the new authority, with mini-
mal impact on coherence locks or client capabilities. Im-
ported metadata is written to the new MDS’s journal for
safety, while additional journal entries on both ends en-
sure that the transfer of authority is invulnerable to in-
tervening failures (similar to a two-phase commit). The
resulting subtree-based partition is kept coarse to mini-
mize prefix replication overhead and to preserve locality.

When metadata is replicated across multiple MDS
nodes, inode contents are separated into three groups,
each with different consistency semantics: security

(owner, mode), file (size, mtime), and immutable (inode
number, ctime, layout). While immutable fields never
change, security and file locks are governed by inde-
pendent finite state machines, each with a different set
of states and transitions designed to accommodate dif-
ferent access and update patterns while minimizing lock
contention. For example, owner and mode are required
for the security check during path traversal but rarely
change, requiring very few states, while the file lock re-
flects a wider range of client access modes as it controls
an MDS’s ability to issue client capabilities.

4.3 Traffic Control
Partitioning the directory hierarchy across multiple
nodes can balance a broad range of workloads, but can-
not always cope with hot spots or flash crowds, where
many clients access the same directory or file. Ceph uses
its knowledge of metadata popularity to provide a wide
distribution for hot spots only when needed and with-
out incurring the associated overhead and loss of direc-
tory locality in the general case. The contents of heavily
read directories (e. g., many opens) are selectively repli-
cated across multiple nodes to distribute load. Directo-
ries that are particularly large or experiencing a heavy
write workload (e. g., many file creations) have their con-
tents hashed by file name across the cluster, achieving a
balanced distribution at the expense of directory local-
ity. This adaptive approach allows Ceph to encompass
a broad spectrum of partition granularities, capturing the
benefits of both coarse and fine partitions in the specific
circumstances and portions of the file system where those
strategies are most effective.

Every MDS response provides the client with updated
information about the authority and any replication of the
relevant inode and its ancestors, allowing clients to learn
the metadata partition for the parts of the file system with
which they interact. Future metadata operations are di-
rected at the authority (for updates) or a random replica
(for reads) based on the deepest known prefix of a given
path. Normally clients learn the locations of unpopular
(unreplicated) metadata and are able to contact the appro-
priate MDS directly. Clients accessing popular metadata,
however, are told the metadata reside either on different
or multiple MDS nodes, effectively bounding the num-
ber of clients believing any particular piece of metadata
resides on any particular MDS, dispersing potential hot
spots and flash crowds before they occur.

5 Distributed Object Storage

From a high level, Ceph clients and metadata servers
view the object storage cluster (possibly tens or hundreds
of thousands of OSDs) as a single logical object store
and namespace. Ceph’s Reliable Autonomic Distributed
Object Store (RADOS) achieves linear scaling in both
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Figure 3: Files are striped across many objects, grouped
into placement groups (PGs), and distributed to OSDs
via CRUSH, a specialized replica placement function.

capacity and aggregate performance by delegating man-
agement of object replication, cluster expansion, failure
detection and recovery to OSDs in a distributed fashion.

5.1 Data Distribution with CRUSH
Ceph must distribute petabytes of data among an evolv-
ing cluster of thousands of storage devices such that de-
vice storage and bandwidth resources are effectively uti-
lized. In order to avoid imbalance (e. g., recently de-
ployed devices mostly idle or empty) or load asymme-
tries (e. g., new, hot data on new devices only), we adopt
a strategy that distributes new data randomly, migrates a
random subsample of existing data to new devices, and
uniformly redistributes data from removed devices. This
stochastic approach is robust in that it performs equally
well under any potential workload.

Ceph first maps objects into placement groups (PGs)
using a simple hash function, with an adjustable bit mask
to control the number of PGs. We choose a value that
gives each OSD on the order of 100 PGs to balance vari-
ance in OSD utilizations with the amount of replication-
related metadata maintained by each OSD. Placement
groups are then assigned to OSDs using CRUSH (Con-
trolled Replication Under Scalable Hashing) [29], a
pseudo-random data distribution function that efficiently
maps each PG to an ordered list of OSDs upon which to
store object replicas. This differs from conventional ap-
proaches (including other object-based file systems) in
that data placement does not rely on any block or ob-
ject list metadata. To locate any object, CRUSH requires
only the placement group and an OSD cluster map: a
compact, hierarchical description of the devices compris-
ing the storage cluster. This approach has two key ad-
vantages: first, it is completely distributed such that any
party (client, OSD, or MDS) can independently calcu-
late the location of any object; and second, the map is
infrequently updated, virtually eliminating any exchange
of distribution-related metadata. In doing so, CRUSH si-
multaneously solves both the data distribution problem
(“where should I store data”) and the data location prob-
lem (“where did I store data”). By design, small changes

to the storage cluster have little impact on existing PG
mappings, minimizing data migration due to device fail-
ures or cluster expansion.

The cluster map hierarchy is structured to align with
the clusters physical or logical composition and potential
sources of failure. For instance, one might form a four-
level hierarchy for an installation consisting of shelves
full of OSDs, rack cabinets full of shelves, and rows of
cabinets. Each OSD also has a weight value to control
the relative amount of data it is assigned. CRUSH maps
PGs onto OSDs based on placement rules, which de-
fine the level of replication and any constraints on place-
ment. For example, one might replicate each PG on three
OSDs, all situated in the same row (to limit inter-row
replication traffic) but separated into different cabinets
(to minimize exposure to a power circuit or edge switch
failure). The cluster map also includes a list of down
or inactive devices and an epoch number, which is incre-
mented each time the map changes. All OSD requests are
tagged with the client’s map epoch, such that all parties
can agree on the current distribution of data. Incremental
map updates are shared between cooperating OSDs, and
piggyback on OSD replies if the client’s map is out of
date.

5.2 Replication
In contrast to systems like Lustre [4], which assume one
can construct sufficiently reliable OSDs using mecha-
nisms like RAID or fail-over on a SAN, we assume that
in a petabyte or exabyte system failure will be the norm
rather than the exception, and at any point in time several
OSDs are likely to be inoperable. To maintain system
availability and ensure data safety in a scalable fashion,
RADOS manages its own replication of data using a vari-
ant of primary-copy replication [2], while taking steps to
minimize the impact on performance.

Data is replicated in terms of placement groups, each
of which is mapped to an ordered list of n OSDs (for
n-way replication). Clients send all writes to the first
non-failed OSD in an object’s PG (the primary), which
assigns a new version number for the object and PG and
forwards the write to any additional replica OSDs. After
each replica has applied the update and responded to the
primary, the primary applies the update locally and the
write is acknowledged to the client. Reads are directed
at the primary. This approach spares the client of any of
the complexity surrounding synchronization or serializa-
tion between replicas, which can be onerous in the pres-
ence of other writers or failure recovery. It also shifts the
bandwidth consumed by replication from the client to the
OSD cluster’s internal network, where we expect greater
resources to be available. Intervening replica OSD fail-
ures are ignored, as any subsequent recovery (see Sec-
tion 5.5) will reliably restore replica consistency.
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Figure 4: RADOS responds with an ack after the write
has been applied to the buffer caches on all OSDs repli-
cating the object. Only after it has been safely committed
to disk is a final commit notification sent to the client.

5.3 Data Safety
In distributed storage systems, there are essentially two
reasons why data is written to shared storage. First,
clients are interested in making their updates visible to
other clients. This should be quick: writes should be vis-
ible as soon as possible, particularly when multiple writ-
ers or mixed readers and writers force clients to operate
synchronously. Second, clients are interested in know-
ing definitively that the data they’ve written is safely
replicated, on disk, and will survive power or other fail-
ures. RADOS disassociates synchronization from safety
when acknowledging updates, allowing Ceph to realize
both low-latency updates for efficient application syn-
chronization and well-defined data safety semantics.

Figure 4 illustrates the messages sent during an ob-
ject write. The primary forwards the update to replicas,
and replies with an ack after it is applied to all OSDs’
in-memory buffer caches, allowing synchronous POSIX
calls on the client to return. A final commit is sent (per-
haps many seconds later) when data is safely committed
to disk. We send the ack to the client only after the up-
date is fully replicated to seamlessly tolerate the failure
of any single OSD, even though this increases client la-
tency. By default, clients also buffer writes until they
commit to avoid data loss in the event of a simultaneous
power loss to all OSDs in the placement group. When
recovering in such cases, RADOS allows the replay of
previously acknowledged (and thus ordered) updates for
a fixed interval before new updates are accepted.

5.4 Failure Detection
Timely failure detection is critical to maintaining data
safety, but can become difficult as a cluster scales to
many thousands of devices. For certain failures, such
as disk errors or corrupted data, OSDs can self-report.
Failures that make an OSD unreachable on the network,
however, require active monitoring, which RADOS dis-
tributes by having each OSD monitor those peers with
which it shares PGs. In most cases, existing replication
traffic serves as a passive confirmation of liveness, with
no additional communication overhead. If an OSD has
not heard from a peer recently, an explicit ping is sent.

RADOS considers two dimensions of OSD liveness:
whether the OSD is reachable, and whether it is as-
signed data by CRUSH. An unresponsive OSD is initially
marked down, and any primary responsibilities (update
serialization, replication) temporarily pass to the next
OSD in each of its placement groups. If the OSD does
not quickly recover, it is marked out of the data distribu-
tion, and another OSD joins each PG to re-replicate its
contents. Clients which have pending operations with a
failed OSD simply resubmit to the new primary.

Because a wide variety of network anomalies may
cause intermittent lapses in OSD connectivity, a small
cluster of monitors collects failure reports and filters
out transient or systemic problems (like a network parti-
tion) centrally. Monitors (which are only partially imple-
mented) use elections, active peer monitoring, short-term
leases, and two-phase commits to collectively provide
consistent and available access to the cluster map. When
the map is updated to reflect any failures or recoveries,
affected OSDs are provided incremental map updates,
which then spread throughout the cluster by piggyback-
ing on existing inter-OSD communication. Distributed
detection allows fast detection without unduly burden-
ing monitors, while resolving the occurrence of incon-
sistency with centralized arbitration. Most importantly,
RADOS avoids initiating widespread data re-replication
due to systemic problems by marking OSDs down but
not out (e. g., after a power loss to half of all OSDs).

5.5 Recovery and Cluster Updates
The OSD cluster map will change due to OSD failures,
recoveries, and explicit cluster changes such as the de-
ployment of new storage. Ceph handles all such changes
in the same way. To facilitate fast recovery, OSDs main-
tain a version number for each object and a log of re-
cent changes (names and versions of updated or deleted
objects) for each PG (similar to the replication logs in
Harp [14]) .

When an active OSD receives an updated cluster map,
it iterates over all locally stored placement groups and
calculates the CRUSH mapping to determine which ones
it is responsible for, either as a primary or replica. If a
PG’s membership has changed, or if the OSD has just
booted, the OSD must peer with the PG’s other OSDs.
For replicated PGs, the OSD provides the primary with
its current PG version number. If the OSD is the primary
for the PG, it collects current (and former) replicas’ PG
versions. If the primary lacks the most recent PG state,
it retrieves the log of recent PG changes (or a complete
content summary, if needed) from current or prior OSDs
in the PG in order to determine the correct (most recent)
PG contents. The primary then sends each replica an in-
cremental log update (or complete content summary, if
needed), such that all parties know what the PG contents
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should be, even if their locally stored object set may not
match. Only after the primary determines the correct PG
state and shares it with any replicas is I/O to objects in
the PG permitted. OSDs are then independently respon-
sible for retrieving missing or outdated objects from their
peers. If an OSD receives a request for a stale or missing
object, it delays processing and moves that object to the
front of the recovery queue.

For example, suppose osd1 crashes and is marked
down, and osd2 takes over as primary for pgA. If osd1
recovers, it will request the latest map on boot, and a
monitor will mark it as up. When osd2 receives the re-
sulting map update, it will realize it is no longer primary
for pgA and send the pgA version number to osd1.
osd1 will retrieve recent pgA log entries from osd2,
tell osd2 its contents are current, and then begin pro-
cessing requests while any updated objects are recovered
in the background.

Because failure recovery is driven entirely by individ-
ual OSDs, each PG affected by a failed OSD will re-
cover in parallel to (very likely) different replacement
OSDs. This approach, based on the Fast Recovery Mech-
anism (FaRM) [37], decreases recovery times and im-
proves overall data safety.

5.6 Object Storage with EBOFS
Although a variety of distributed file systems use local
file systems like ext3 to manage low-level storage [4, 12],
we found their interface and performance to be poorly
suited for object workloads [27]. The existing kernel in-
terface limits our ability to understand when object up-
dates are safely committed on disk. Synchronous writes
or journaling provide the desired safety, but only with
a heavy latency and performance penalty. More impor-
tantly, the POSIX interface fails to support atomic data
and metadata (e. g., attribute) update transactions, which
are important for maintaining RADOS consistency.

Instead, each Ceph OSD manages its local object stor-
age with EBOFS, an Extent and B-tree based Object File
System. Implementing EBOFS entirely in user space and
interacting directly with a raw block device allows us
to define our own low-level object storage interface and
update semantics, which separate update serialization
(for synchronization) from on-disk commits (for safety).
EBOFS supports atomic transactions (e. g., writes and at-
tribute updates on multiple objects), and update functions
return when the in-memory caches are updated, while
providing asynchronous notification of commits.

A user space approach, aside from providing greater
flexibility and easier implementation, also avoids cum-
bersome interaction with the Linux VFS and page cache,
both of which were designed for a different interface and
workload. While most kernel file systems lazily flush
updates to disk after some time interval, EBOFS aggres-

sively schedules disk writes, and opts instead to cancel
pending I/O operations when subsequent updates ren-
der them superfluous. This provides our low-level disk
scheduler with longer I/O queues and a corresponding
increase in scheduling efficiency. A user-space sched-
uler also makes it easier to eventually prioritize work-
loads (e. g., client I/O versus recovery) or provide quality
of service guarantees [36].

Central to the EBOFS design is a robust, flexible, and
fully integrated B-tree service that is used to locate ob-
jects on disk, manage block allocation, and index collec-
tions (placement groups). Block allocation is conducted
in terms of extents—start and length pairs—instead of
block lists, keeping metadata compact. Free block ex-
tents on disk are binned by size and sorted by location,
allowing EBOFS to quickly locate free space near the
write position or related data on disk, while also limit-
ing long-term fragmentation. With the exception of per-
object block allocation information, all metadata is kept
in memory for performance and simplicity (it is quite
small, even for large volumes). Finally, EBOFS aggres-
sively performs copy-on-write: with the exception of su-
perblock updates, data is always written to unallocated
regions of disk.

6 Performance and Scalability Evaluation

We evaluate our prototype under a range of microbench-
marks to demonstrate its performance, reliability, and
scalability. In all tests, clients, OSDs, and MDSs are
user processes running on a dual-processor Linux clus-
ter with SCSI disks and communicating using TCP. In
general, each OSD or MDS runs on its own host, while
tens or hundreds of client instances may share the same
host while generating workload.

6.1 Data Performance
EBOFS provides superior performance and safety se-
mantics, while the balanced distribution of data gener-
ated by CRUSH and the delegation of replication and
failure recovery allow aggregate I/O performance to
scale with the size of the OSD cluster.

6.1.1 OSD Throughput
We begin by measuring the I/O performance of a 14-node
cluster of OSDs. Figure 5 shows per-OSD throughput
(y) with varying write sizes (x) and replication. Work-
load is generated by 400 clients on 20 additional nodes.
Performance is ultimately limited by the raw disk band-
width (around 58 MB/sec), shown by the horizontal line.
Replication doubles or triples disk I/O, reducing client
data rates accordingly when the number of OSDs is fixed.

Figure 6 compares the performance of EBOFS to that
of general-purpose file systems (ext3, ReiserFS, XFS)
in handling a Ceph workload. Clients synchronously
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Figure 5: Per-OSD write performance. The horizontal
line indicates the upper limit imposed by the physical
disk. Replication has minimal impact on OSD through-
put, although if the number of OSDs is fixed, n-way
replication reduces total effective throughput by a factor
of n because replicated data must be written to n OSDs.
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Figure 6: Performance of EBOFS compared to general-
purpose file systems. Although small writes suffer from
coarse locking in our prototype, EBOFS nearly saturates
the disk for writes larger than 32 KB. Since EBOFS lays
out data in large extents when it is written in large incre-
ments, it has significantly better read performance.

write out large files, striped over 16 MB objects, and read
them back again. Although small read and write per-
formance in EBOFS suffers from coarse threading and
locking, EBOFS very nearly saturates the available disk
bandwidth for writes sizes larger than 32 KB, and signifi-
cantly outperforms the others for read workloads because
data is laid out in extents on disk that match the write
sizes—even when they are very large. Performance was
measured using a fresh file system. Experience with an
earlier EBOFS design suggests it will experience signifi-
cantly lower fragmentation than ext3, but we have not yet
evaluated the current implementation on an aged file sys-
tem. In any case, we expect the performance of EBOFS
after aging to be no worse than the others.

6.1.2 Write Latency
Figure 7 shows the synchronous write latency (y) for a
single writer with varying write sizes (x) and replica-
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Figure 7: Write latency for varying write sizes and repli-
cation. More than two replicas incurs minimal additional
cost for small writes because replicated updates occur
concurrently. For large synchronous writes, transmis-
sion times dominate. Clients partially mask that latency
for writes over 128 KB by acquiring exclusive locks and
asynchronously flushing the data.
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Figure 8: OSD write performance scales linearly with
the size of the OSD cluster until the switch is saturated
at 24 OSDs. CRUSH and hash performance improves
when more PGs lower variance in OSD utilization.

tion. Because the primary OSD simultaneously retrans-
mits updates to all replicas, small writes incur a mini-
mal latency increase for more than two replicas. For
larger writes, the cost of retransmission dominates; 1 MB
writes (not shown) take 13 ms for one replica, and 2.5
times longer (33 ms) for three. Ceph clients partially
mask this latency for synchronous writes over 128 KB
by acquiring exclusive locks and then asynchronously
flushing the data to disk. Alternatively, write-sharing
applications can opt to use O LAZY. With consistency
thus relaxed, clients can buffer small writes and submit
only large, asynchronous writes to OSDs; the only la-
tency seen by applications will be due to clients which
fill their caches waiting for data to flush to disk.

6.1.3 Data Distribution and Scalability

Ceph’s data performance scales nearly linearly in the
number of OSDs. CRUSH distributes data pseudo-
randomly such that OSD utilizations can be accurately
modeled by a binomial or normal distribution—what one
expects from a perfectly random process [29]. Vari-
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ance in utilizations decreases as the number of groups
increases: for 100 placement groups per OSD the stan-
dard deviation is 10%; for 1000 groups it is 3%. Fig-
ure 8 shows per-OSD write throughput as the cluster
scales using CRUSH, a simple hash function, and a linear
striping strategy to distribute data in 4096 or 32768 PGs
among available OSDs. Linear striping balances load
perfectly for maximum throughput to provide a bench-
mark for comparison, but like a simple hash function,
it fails to cope with device failures or other OSD clus-
ter changes. Because data placement with CRUSH or
a hash is stochastic, throughputs are lower with fewer
PGs: greater variance in OSD utilizations causes request
queue lengths to drift apart under our entangled client
workload. Because devices can become overfilled or
overutilized with small probability, dragging down per-
formance, CRUSH can correct such situations by of-
floading any fraction of the allocation for OSDs specially
marked in the cluster map. Unlike the hash and linear
strategies, CRUSH also minimizes data migration under
cluster expansion while maintaining a balanced distribu-
tion. CRUSH calculations are O(log n) (for a cluster of
n OSDs) and take only tens of microseconds, allowing
clusters to grow to hundreds of thousands of OSDs.

6.2 Metadata Performance
Ceph’s MDS cluster offers enhanced POSIX semantics
with excellent scalability. We measure performance via
a partial workload lacking any data I/O; OSDs in these
experiments are used solely for metadata storage.

6.2.1 Metadata Update Latency
We first consider the latency associated with metadata
updates (e. g., mknod or mkdir). A single client creates
a series of files and directories which the MDS must
synchronously journal to a cluster of OSDs for safety.
We consider both a diskless MDS, where all metadata is
stored in a shared OSD cluster, and one which also has
a local disk serving as the primary OSD for its journal.
Figure 9(a) shows the latency (y) associated with meta-
data updates in both cases with varying metadata repli-
cation (x) (where zero corresponds to no journaling at
all). Journal entries are first written to the primary OSD
and then replicated to any additional OSDs. With a local
disk, the initial hop from the MDS to the (local) primary
OSD takes minimal time, allowing update latencies for
2× replication similar to 1× in the diskless model. In
both cases, more than two replicas incurs little additional
latency because replicas update in parallel.

6.2.2 Metadata Read Latency
The behavior of metadata reads (e. g., readdir, stat, open)
is more complex. Figure 9(b) shows cumulative time (y)
consumed by a client walking 10,000 nested directories
with a readdir in each directory and a stat on each file. A
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Figure 9: Using a local disk lowers the write latency by
avoiding the initial network round-trip. Reads benefit
from caching, while readdirplus or relaxed consistency
eliminate MDS interaction for stats following readdir.
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Figure 10: Per-MDS throughput under a variety of work-
loads and cluster sizes. As the cluster grows to 128
nodes, efficiency drops no more than 50% below perfect
linear (horizontal) scaling for most workloads, allowing
vastly improved performance over existing systems.

primed MDS cache reduces readdir times. Subsequent
stats are not affected, because inode contents are embed-
ded in directories, allowing the full directory contents to
be fetched into the MDS cache with a single OSD ac-
cess. Ordinarily, cumulative stat times would dominate
for larger directories. Subsequent MDS interaction can
be eliminated by using readdirplus, which explicitly bun-
dles stat and readdir results in a single operation, or by
relaxing POSIX to allow stats immediately following a
readdir to be served from client caches (the default).

6.2.3 Metadata Scaling
We evaluate metadata scalability using a 430 node par-
tition of the alc Linux cluster at Lawrence Livermore
National Laboratory (LLNL). Figure 10 shows per-MDS
throughput (y) as a function of MDS cluster size (x),
such that a horizontal line represents perfect linear scal-
ing. In the makedirs workload, each client creates a tree
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Figure 11: Average latency versus per-MDS throughput
for different cluster sizes (makedirs workload).

of nested directories four levels deep, with ten files and
subdirectories in each directory. Average MDS through-
put drops from 2000 ops per MDS per second with a
small cluster, to about 1000 ops per MDS per second
(50% efficiency) with 128 MDSs (over 100,000 ops/sec
total). In the makefiles workload, each client creates
thousands of files in the same directory. When the high
write levels are detected, Ceph hashes the shared direc-
tory and relaxes the directory’s mtime coherence to dis-
tribute the workload across all MDS nodes. The open-
shared workload demonstrates read sharing by having
each client repeatedly open and close ten shared files. In
the openssh workloads, each client replays a captured file
system trace of a compilation in a private directory. One
variant uses a shared /lib for moderate sharing, while
the other shares /usr/include, which is very heavily
read. The openshared and openssh+include workloads
have the heaviest read sharing and show the worst scal-
ing behavior, we believe due to poor replica selection by
clients. openssh+lib scales better than the trivially sep-
arable makedirs because it contains relatively few meta-
data modifications and little sharing. Although we be-
lieve that contention in the network or threading in our
messaging layer further lowered performance for larger
MDS clusters, our limited time with dedicated access to
the large cluster prevented a more thorough investigation.

Figure 11 plots latency (y) versus per-MDS through-
put (x) for a 4-, 16-, and 64-node MDS cluster under
the makedirs workload. Larger clusters have imperfect
load distributions, resulting in lower average per-MDS
throughput (but, of course, much higher total through-
put) and slightly higher latencies.

Despite imperfect linear scaling, a 128-node MDS
cluster running our prototype can service more than
a quarter million metadata operations per second (128
nodes at 2000 ops/sec). Because metadata transactions
are independent of data I/O and metadata size is indepen-
dent of file size, this corresponds to installations with po-
tentially many hundreds of petabytes of storage or more,
depending on average file size. For example, scientific
applications creating checkpoints on LLNL’s Bluegene/L

might involve 64 thousand nodes with two processors
each writing to separate files in the same directory (as in
the makefiles workload). While the current storage sys-
tem peaks at 6,000 metadata ops/sec and would take min-
utes to complete each checkpoint, a 128-node Ceph MDS
cluster could finish in two seconds. If each file were only
10 MB (quite small by HPC standards) and OSDs sustain
50 MB/sec, such a cluster could write 1.25 TB/sec, sat-
urating at least 25,000 OSDs (50,000 with replication).
250 GB OSDs would put such a system at more than six
petabytes. More importantly, Ceph’s dynamic metadata
distribution allows an MDS cluster (of any size) to re-
allocate resources based on the current workload, even
when all clients access metadata previously assigned to
a single MDS, making it significantly more versatile and
adaptable than any static partitioning strategy.

7 Experiences

We were pleasantly surprised by the extent to which re-
placing file allocation metadata with a distribution func-
tion became a simplifying force in our design. Al-
though this placed greater demands on the function it-
self, once we realized exactly what those requirements
were, CRUSH was able to deliver the necessary scala-
bility, flexibility, and reliability. This vastly simplified
our metadata workload while providing both clients and
OSDs with complete and independent knowledge of the
data distribution. The latter enabled us to delegate re-
sponsibility for data replication, migration, failure detec-
tion, and recovery to OSDs, distributing these mecha-
nisms in a way that effectively leveraged their bundled
CPU and memory. RADOS has also opened the door to
a range of future enhancements that elegantly map onto
our OSD model, such as bit error detection (as in the
Google File System [7]) and dynamic replication of data
based on workload (similar to AutoRAID [34]).

Although it was tempting to use existing kernel file
systems for local object storage (as many other systems
have done [4, 7, 9]), we recognized early on that a file
system tailored for object workloads could offer better
performance [27]. What we did not anticipate was the
disparity between the existing file system interface and
our requirements, which became evident while develop-
ing the RADOS replication and reliability mechanisms.
EBOFS was surprisingly quick to develop in user-space,
offered very satisfying performance, and exposed an in-
terface perfectly suited to our requirements.

One of the largest lessons in Ceph was the importance
of the MDS load balancer to overall scalability, and the
complexity of choosing what metadata to migrate where
and when. Although in principle our design and goals
seem quite simple, the reality of distributing an evolv-
ing workload over a hundred MDSs highlighted addi-
tional subtleties. Most notably, MDS performance has
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a wide range of performance bounds, including CPU,
memory (and cache efficiency), and network or I/O limi-
tations, any of which may limit performance at any point
in time. Furthermore, it is difficult to quantitatively cap-
ture the balance between total throughput and fairness;
under certain circumstances unbalanced metadata distri-
butions can increase overall throughput [30].

Implementation of the client interface posed a greater
challenge than anticipated. Although the use of FUSE
vastly simplified implementation by avoiding the kernel,
it introduced its own set of idiosyncrasies. DIRECT IO
bypassed kernel page cache but didn’t support mmap,
forcing us to modify FUSE to invalidate clean pages
as a workaround. FUSE’s insistence on performing its
own security checks results in copious getattrs (stats) for
even simple application calls. Finally, page-based I/O
between kernel and user space limits overall I/O rates.
Although linking directly to the client avoids FUSE is-
sues, overloading system calls in user space introduces
a new set of issues (most of which we have yet to fully
examine), making an in-kernel client module inevitable.

8 Related Work

High-performance scalable file systems have long been
a goal of the HPC community, which tends to place a
heavy load on the file system [18, 27]. Although many
file systems attempt to meet this need, they do not pro-
vide the same level of scalability that Ceph does. Large-
scale systems like OceanStore [11] and Farsite [1] are
designed to provide petabytes of highly reliable storage,
and can provide simultaneous access to thousands of sep-
arate files to thousands of clients, but cannot provide
high-performance access to a small set of files by tens
of thousands of cooperating clients due to bottlenecks in
subsystems such as name lookup. Conversely, parallel
file and storage systems such as Vesta [6], Galley [17],
PVFS [12], and Swift [5] have extensive support for
striping data across multiple disks to achieve very high
transfer rates, but lack strong support for scalable meta-
data access or robust data distribution for high reliability.
For example, Vesta permits applications to lay their data
out on disk, and allows independent access to file data on
each disk without reference to shared metadata. How-
ever, like many other parallel file systems, Vesta does
not provide scalable support for metadata lookup. As a
result, these file systems typically provide poor perfor-
mance on workloads that access many small files or re-
quire many metadata operations. They also typically suf-
fer from block allocation issues: blocks are either allo-
cated centrally or via a lock-based mechanism, prevent-
ing them from scaling well for write requests from thou-
sands of clients to thousands of disks. GPFS [24] and
StorageTank [16] partially decouple metadata and data

management, but are limited by their use of block-based
disks and their metadata distribution architecture.

Grid-based file systems such as LegionFS [33] are de-
signed to coordinate wide-area access and are not opti-
mized for high performance in the local file system. Sim-
ilarly, the Google File System [7] is optimized for very
large files and a workload consisting largely of reads and
file appends. Like Sorrento [26], it targets a narrow class
of applications with non-POSIX semantics.

Recently, many file systems and platforms, including
Federated Array of Bricks (FAB) [23] and pNFS [9] have
been designed around network attached storage [8]. Lus-
tre [4], the Panasas file system [32], zFS [21], Sorrento,
and Kybos [35] are based on the object-based storage
paradigm [3] and most closely resemble Ceph. How-
ever, none of these systems has the combination of scal-
able and adaptable metadata management, reliability and
fault tolerance that Ceph provides. Lustre and Panasas
in particular fail to delegate responsibility to OSDs, and
have limited support for efficient distributed metadata
management, limiting their scalability and performance.
Further, with the exception of Sorrento’s use of consis-
tent hashing [10], all of these systems use explicit al-
location maps to specify where objects are stored, and
have limited support for rebalancing when new storage
is deployed. This can lead to load asymmetries and poor
resource utilization, while Sorrento’s hashed distribution
lacks CRUSH’s support for efficient data migration, de-
vice weighting, and failure domains.

9 Future Work

Some core Ceph elements have not yet been imple-
mented, including MDS failure recovery and several
POSIX calls. Two security architecture and protocol
variants are under consideration, but neither have yet
been implemented [13, 19]. We also plan on investigat-
ing the practicality of client callbacks on namespace to
inode translation metadata. For static regions of the file
system, this could allow opens (for read) to occur with-
out MDS interaction. Several other MDS enhancements
are planned, including the ability to create snapshots of
arbitrary subtrees of the directory hierarchy [28].

Although Ceph dynamically replicates metadata when
flash crowds access single directories or files, the same
is not yet true of file data. We plan to allow OSDs to
dynamically adjust the level of replication for individual
objects based on workload, and to distribute read traffic
across multiple OSDs in the placement group. This will
allow scalable access to small amounts of data, and may
facilitate fine-grained OSD load balancing using a mech-
anism similar to D-SPTF [15].

Finally, we are working on developing a quality
of service architecture to allow both aggregate class-
based traffic prioritization and OSD-managed reserva-
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tion based bandwidth and latency guarantees. In addi-
tion to supporting applications with QoS requirements,
this will help balance RADOS replication and recovery
operations with regular workload. A number of other
EBOFS enhancements are planned, including improved
allocation logic, data scouring, and checksums or other
bit-error detection mechanisms to improve data safety.

10 Conclusions

Ceph addresses three critical challenges of storage
systems—scalability, performance, and reliability—by
occupying a unique point in the design space. By shed-
ding design assumptions like allocation lists found in
nearly all existing systems, we maximally separate data
from metadata management, allowing them to scale inde-
pendently. This separation relies on CRUSH, a data dis-
tribution function that generates a pseudo-random distri-
bution, allowing clients to calculate object locations in-
stead of looking them up. CRUSH enforces data replica
separation across failure domains for improved data
safety while efficiently coping with the inherently dy-
namic nature of large storage clusters, where devices fail-
ures, expansion and cluster restructuring are the norm.

RADOS leverages intelligent OSDs to manage data
replication, failure detection and recovery, low-level disk
allocation, scheduling, and data migration without en-
cumbering any central server(s). Although objects can be
considered files and stored in a general-purpose file sys-
tem, EBOFS provides more appropriate semantics and
superior performance by addressing the specific work-
loads and interface requirements present in Ceph.

Finally, Ceph’s metadata management architecture ad-
dresses one of the most vexing problems in highly
scalable storage—how to efficiently provide a single
uniform directory hierarchy obeying POSIX semantics
with performance that scales with the number of meta-
data servers. Ceph’s dynamic subtree partitioning is a
uniquely scalable approach, offering both efficiency and
the ability to adapt to varying workloads.

Ceph is licensed under the LGPL and is available at
http://ceph.sourceforge.net/.
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